PV MODULE CHARACTERISTICS
The equivalent circuit of a PV module is shown in Fig. 1(a), while typical output characteristics are shown in Fig. 1(b).
The
characteristic equation for this PV model is given by :
I = ILG - Ios * { exp[ q * ( V + I * Rs ) / ( A * k * T ) ] - 1 } - ( V + I * Rs ) / Rsh
(4)
where
Ios = Ior * ( T / Tr )3 * exp[ q * EGO * ( 1 / Tr - 1 / T ) / ( B * k ) ]
ILG = [ ISCR + KI * ( T - 25 ) ] * λ / 100
and
| I and V | cell output current and voltage |
| Ios | cell reverse saturation current |
| T | cell temperature in °C |
| k | Boltzmann’s constant |
| q | electronic charge |
| KI | short circuit current temperature coefficient at Iscr in A/°C |
| λ | solar irradiation in W/m² |
| Iscr | Short-circuit current at 25°C and 1000W/m² |
| ILG | Light-generated current |
| EGO | band gap for silicon |
| B = A | ideality factors (1.92) |
| Tr | Reference temperature °K |
| Ior | Cell saturation current at Tr |
| Rsh | Shunt resistance |
| Rs | Series resistance |
Fig. 1. (a) Equivalent circuit of a PV module and (b) typical PV module current-voltage and power-voltage characteristics.
Quelques Docs :
Arduino The Peak Power Tracking Project
peak_power_tracker_nolan_ppt102-94 (.pdf, 400Ko)
photovoltaic_maximum_power_point_tracking_control_system_j17 (.pdf, 159Ko)
Dynamic Maximum Power Point Tracker for Photovoltaic Applications - ripcord2 (.pdf, 433Ko)
simple_maximum_power_point_tracker_for_arrays_smpptfpa (.pdf, 151Ko)
Retour Solar Cell